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Integrable systems on Lie (co)algebras

Consider a finite-dimensional Lie algebra g and its dual space g∗.

Definition
The Poisson-Lie bracket on g∗ is defined by:

{f , g}(x) = 〈x , [df (x), dg(x)]〉.

Thus, each function H : g∗ → R generates a Hamiltonian vector field on g∗

which has a natural interpretation in terms of the coadjoint representation:

XH(x) = ad ∗dH(x)x .

Complete Liouville integrability means that the corresponding Hamiltonian
system ẋ = XH(x) (Euler equation) admits sufficiently many independent
commuting first integrals f1, . . . , fk . The number k must be equal to
1
2
(dim g + ind g), where ind g is a corank of the Poisson-Lie bracket at a generic

point x ∈ g∗.



Semisimple case

If g is semisimple then it admits an invariant form (Killing form) which allows
us to identify g with g∗ and ad with ad ∗. The Euler equation on g obtains the
Lax form

ẋ = [dH(x), x ].

Important particular case: quadratic Hamiltonians H(x) = 1
2
〈R(x), x〉 where

R : g→ g is a symmetric operator. The Euler equation becomes

ẋ = [R(x), x ]. (1)

Problem: Describe/classify operators R : g→ g for which (1) is completely
integrable.



Manakov–Mischenko–Fomenko construction for so(n)

Here g = so(n) is the Lie algebra of skew symmetric matrices.
Assume that R : so(n)→ so(n) satisfies the following identity

[R(x), a] = [x , b], x ∈ so(n), (2)

for symmetric matrices a 6= 0 and b. Then the following statement holds

Theorem (Manakov, Mischenko, Fomenko)

Let R : so(n)→ so(n) be symmetric and satisfy (2). Then

I the system (1) admits the following Lax representation with a parameter:

d

dt
(x + λa) = [R(x) + λb, x + λa];

I the functions Tr (x + λa)k are first integrals of (1) for any λ ∈ R and,
moreover, these integrals commute;

I if a is regular, then (1) is completely integrable.



Geodesically equivalent (pseudo)-Riemannian metrics

Definition
Two (pseudo)-Riemannian metrics g and ḡ are geodesically equivalent if they
have the same geodesics (viewed as unparametrised curves).

Instead of ḡ , it is convenient to introduce a linear operator ((1,1)-tensor):

L =

„
det ḡ

det g

« 1
n+1

ḡ−1g .

L is (pseudo) self-adjoint w.r.t. both g and ḡ . Notice: ḡ = 1
det L

gL−1.

Theorem (classical result)

g and ḡ are geodesically equivalent if and only if L satisfies the following
equation:

∇uL =
1

2

`
u ⊗ d trL + (u ⊗ d trL)∗

´
for any vector field u.

Or for those who likes ”indices”:

2Lij,k = (trL),i gjk + (trL),j gik .
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g and ḡ are geodesically equivalent if and only if L satisfies the following
equation:

∇uL =
1

2

`
u ⊗ d trL + (u ⊗ d trL)∗

´
for any vector field u. Or for those who likes ”indices”:

2Lij,k = (trL),i gjk + (trL),j gik .



Compatibility conditions

For the equation ∇uL = F (u, L), we compute:

R(u, v) L− L R(u, v) =

∇u∇v L−∇v∇uL

−∇[u,v ]L

=
∇uF (v , L)−∇v F (u, L)

− F ([u, v ], L)

where R(u, v) = R(u ∧ v) is the curvature tensor.

In our case: R(u ∧ v) L− L R(u ∧ v) = (u ∧ v) ·M + ((u ∧ v) ·M)∗ , where
Mij = ∇i∇jTr L.

Using g , we may think of u ∧ v as a skew-symmetric operator and of M as a
symmetric operator. Then taking into account that

((u ∧ v) ·M)∗ = M∗ · (u ∧ v)∗ = −M · (u ∧ v),

we have:
[R(u ∧ v), L] = [u ∧ v ,M].

Theorem (Matveev, AB)

If g admits a non-trivial geodesically equivalent partner ḡ , then the Riemann
curvature tensor of g is a Manakov–Mischenko–Fomenko operator on so(g).
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Some corollaries

Thus, we have
[R(X ), L] = [X ,M].

where R is the curvature tensor, L is the operator which ”connect” g and ḡ ,
and M is the Hessian of Tr L, and X is an arbitrary skew-symmetric operator.

Corollary

L and M commute. Moreover, M is a polynomial of L.

Corollary

If L is regular, then R can be reconstructed from L and M:

R(X ) = ad−1
L ad M(X ).

If M = p(L) (polynomial), then R(X ) = d
dt

p(A + tX )|t=0.

Corollary

If the curvature tensor of a given metric is not a MMF operator, then g admits
no geodesically equivalent ḡ .
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Fubini theorem

Theorem (Kiosak, Matveev, AB)

Let dim ≥ 3. Assume that g admits two ”independent” metrics g1 and g2

geodesically equivalent to it. Let g and g1 be strictly non-proportional.
Then g, g1 and g2 are all of constant curvature.

Algebraic reformulation: Let

[R(X ), L1] = [X ,M1] and [R(X ), L2] = [X ,M2],

where L1, L2 and Id are linearly independent. If L1 is regular, then
R : so(n)→ so(n) is a scalar operator, i.e., R(X ) = k · X .

Lemma
If [R(X ), L1] = [X ,M1] and [R(X ), L2] = [X ,M2], then L1 is proportional either
to M1, or to L2.

Lemma
If L1 is regular and M1 = k · L1, then R(X ) = k · X .
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Sketch of proof

We may assume that Li ,Mi are trace free.

Let Y and Z be arbitrary symmetric matrices, We substitute X = [L2,Z ] into
[R(X ), L1] = [X ,M1] and take ”inner product” with Z :

〈[[L2,Y ],M1],Z〉 = 〈[R([L2,Y ]), L1],Z〉 = 〈R([L2,Y ]), [L1,Z ]〉 = 〈[L2,Y ],R([L1,Z ])〉
= 〈Y , [R([L1,Z ]), L2]〉 = 〈Y , [[L1,Z ],M2]〉 = 〈[[M2,Y ], L1],Z〉

Since Z is an arbitrary matrix, we conclude that

[[L2,Y ],M1] = [[M2,Y ], L1] (3)

Similarly, [[L1,Y ],M2] = [[M1,Y ], L2]. Notice that R has disappeared!

Using the Jacobi identity, we get

[M1, L2] = [L1,M2]

The main identity (3) becomes:

YT + TY = M2YL1 + L1YM2 −M1YL2 − L2YM1,

where T = M2L1 − L2M1 = L1M2 −M2L1.
Taking ”trace”, we get:

(n + 2)T + Tr T · Id = M2L1 + L1M2 − L2M1 −M1L2 = 2T
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Thus, T = 0 and we come to a very simple identity:

M2YL1 + L1YM2 = M1YL2 + L2YM1

which holds for any symmetric matrix Y . We want to show that

I either L1 is proportional to M1 and M2 is proportional to L1,

I or L1 is proportional to L2 and M1 is proportional to M2.

In some sense, this is a ”matrix” analog of the following ”vector” question:
Let

C = ml> + lm>

where m and l are vector-columns. Can we reconstruct l and m for a given C?
The answer is absolutely clear: yes, up to proportionality and permutation.
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Lemma
If L1 is regular and M1 = k · L1, then R(X ) = k · X .

Proof. [R(X ), L1] = [X ,M1] ⇒ [R(X )− k · X , L1] = 0.

If L1 is regular, then it is well known that its centralizer is generated by its
powers (L1)k . In particular, the centralizer consists of symmetric operators only.

Since R(X )− k · X is skew-symmetric, we obtain

R(X ) = k · X for any X

THE CURVATURE IS CONSTANT
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