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Integrable systems on Lie (co)algebras

Consider a finite-dimensional Lie algebra g and its dual space g*.

Definition
The Poisson-Lie bracket on g* is defined by:

{f, g}(x) = (x, [df (x), dg(x)])-

Thus, each function H : g* — R generates a Hamiltonian vector field on g*
which has a natural interpretation in terms of the coadjoint representation:

Xu(x) = ad gryx x.

Complete Liouville integrability means that the corresponding Hamiltonian
system X = Xu(x) (Euler equation) admits sufficiently many independent
commuting first integrals fi, ..., fx. The number k must be equal to
1(dimg+ind g), where ind g is a corank of the Poisson-Lie bracket at a generic
point x € g*.



Semisimple case

If g is semisimple then it admits an invariant form (Killing form) which allows
us to identify g with g* and ad with ad *. The Euler equation on g obtains the

Lax form
X = [dH(x), x].

Important particular case: quadratic Hamiltonians H(x) = 1(R(x), x) where
R : g — g is a symmetric operator. The Euler equation becomes

X = [R(x), x]. (1)

Problem: Describe/classify operators R : g — g for which (1) is completely
integrable.



Manakov—Mischenko—Fomenko construction for so(n)

Here g = so(n) is the Lie algebra of skew symmetric matrices.
Assume that R : so(n) — so(n) satisfies the following identity

[R(x),a] =[x, b], x € so(n), (2)
for symmetric matrices a # 0 and b. Then the following statement holds

Theorem (Manakov, Mischenko, Fomenko)
Let R : so(n) — so(n) be symmetric and satisfy (2). Then

> the system (1) admits the following Lax representation with a parameter:
d
E(X + Aa) = [R(x) + Ab, x + Aa];

> the functions Tr (x 4+ Aa)* are first integrals of (1) for any A € R and,
moreover, these integrals commute;

> if a is regular, then (1) is completely integrable.



Geodesically equivalent (pseudo)-Riemannian metrics

Definition
Two (pseudo)-Riemannian metrics g and g are geodesically equivalent if they
have the same geodesics (viewed as unparametrised curves).
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Theorem (classical result)

g and g are geodesically equivalent if and only if L satisfies the following

equation:
1

2
for any vector field u. Or for those who likes "indices”:

Vik=Z(u®dtrL+ (u®d trL)")

2L,'J',k = (trL),,-gjk + (trL),jg,-k.
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For the equation V,L = F(u, L), we compute:

R(u,v)L—LR(u,v) =V, V., L -V, V,L -V, L=
VUF(V7 L) - VVF(uv L) - F([”? V]7 L)
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Inourcase: R(uAv)L—LR(uAv)=(uAv)- M+ ((uAv)-M)", where
M =VV;Tr L.

Using g, we may think of u A v as a skew-symmetric operator and of M as a
symmetric operator. Then taking into account that

((uAv) - M) =M -(uAv) ==M-(uAv),

we have:
[R(unv), L] =[uAv,M].

Theorem (Matveev, AB)

If g admits a non-trivial geodesically equivalent partner g, then the Riemann
curvature tensor of g is a Manakov—Mischenko—Fomenko operator on so(g).
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Some corollaries

Thus, we have
[R(X), L] = [X, M].

where R is the curvature tensor, L is the operator which "connect” g and g,
and M is the Hessian of Tr L, and X is an arbitrary skew-symmetric operator.

Corollary

L and M commute. Moreover, M is a polynomial of L.

Corollary

If L is regular, then R can be reconstructed from L and M:

R(X) = ad; 'ad m(X).

If M = p(L) (polynomial), then R(X) = % p(A + tX)|e=o.

Corollary

If the curvature tensor of a given metric is not a MMF operator, then g admits
no geodesically equivalent g.
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where L1, Ly and Id are linearly independent. If L; is regular, then
R : so(n) — so(n) is a scalar operator, i.e., R(X) = k- X.

Lemma
If [R(X), L1] = [X, Mi] and [R(X), Lo] = [X, M2], then Ly is proportional either
to My, or to Ls.

Lemma
If Ly is regular and My = k - Ly, then R(X) = k - X.
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The main identity (3) becomes:
YT +TY =MyYLi + LiYMy — ML YLy — L2YM1,

where T = M2L1 — L2M1 = L1M2 — M2L1.
Taking "trace”, we get:

(n+2)T+TrTId: MoLy + LiMs — LoMy— Mgly =2T
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Thus, T =0 and we come to a very simple identity:
MoyYL1 + LiYMy = M1 YLy + Lo YM,

which holds for any symmetric matrix Y. We want to show that
> either L is proportional to M; and M is proportional to Li,
» or L;is proportional to L, and M; is proportional to M.

In some sense, this is a "matrix” analog of the following "vector” question:
Let

C=ml" +Im"

where m and | are vector-columns. Can we reconstruct / and m for a given C?
The answer is absolutely clear: yes, up to proportionality and permutation.
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THE CURVATURE IS CONSTANT



