Stability analysis and bi-Hamiltonian systems

Alexey Bolsinov
Loughborough University

15 June, 2012, Milano
Workshop on Geometric and Analytic Aspects of Integrable Systems
Some basic notions and notation

Symplectic manifold \((M, \omega)\)

Hamiltonian system \(\dot{x} = X_H(x) = \omega^{-1}(dH(x))\)

Integrability: there exist \(f_1, \ldots, f_n : M \to \mathbb{R}\) which:

- first integrals of \(X_H(x)\);
- commute;
- independent almost everywhere.

Singular Lagrangian fibration on \(M\) whose generic fibers are Liouville tori with quasi-periodic dynamics

Set of critical points \(S = \{x \in M \mid \text{rank}(df_1(x), \ldots, df_n(x)) < n\}\)

SINGULARITIES ARE IMPORTANT

General problem: Describe \(S\) and its properties. In particular, find all stable periodic orbits and equilibria.
Some basic notions and notation

Poisson manifold \((M, A)\), Poisson structure \(A = (A^{ij})\) and Poisson bracket
\[
\{f, g\}_A = A^{ij}(x) \frac{\partial f}{\partial x^i} \frac{\partial g}{\partial x^j}.
\]
We set \(\text{rank } A = \max_{x \in M} \text{rank } A(x)\).
If \(\text{rank } A < \dim M\) then, as a rule, there exist Casimir functions \(f \in C^\infty(M)\) such that
\[
\{f, g\}_A = 0 \quad \text{for any } g \in C^\infty(M)
\]

\(M\) is foliated into symplectic leaves and the Casimir functions can be characterized by the property of being constant on each symplectic leaf (equivalently, \(df(x) \in \text{Ker } A(x)\) for any \(x \in M\)).
To each \(A\) we can assign its singular set
\[
S_A = \{x \in M \mid \text{rank } A(x) < \text{rank } A\}
\]
(equivalently, \(S_A\) is the union of all symplectic leaves of non-maximal dimension).
Two Poisson structures \(A\) and \(B\) are compatible if \(\mu A + \lambda B\) is again a Poisson structure.
Let M be a manifold endowed with a linear family $\mathcal{J} = \{A_\lambda = A + \lambda B\}$ of compatible Poisson brackets. Assume that all $A_\lambda \in \mathcal{J}$ are degenerate so that each of them possesses non-trivial Casimir functions.

Proposition

Let $\dot{x} = v(x)$ be a dynamical system which is Hamiltonian w.r.t. each generic $A_\mu \in \mathcal{J}$, then
1) the family of functions

$$\mathcal{F}_\mathcal{J} = \{\text{all Casimir functions of all brackets } A_\mu\}$$

consists of its first integrals;
2) these integrals commute.

Natural questions to discuss: PROPERTIES of $\mathcal{F}_\mathcal{J}$

- Completeness
- Set of critical points
- Equilibrium points
- Non-degeneracy conditions, types
- Codimension one singularities
- Global properties
Euler-Manakov top: $\frac{d}{dt} X = [R(X), X]$, where $R(X)_{ij} = \frac{b_i - b_j}{a_i - a_j} X_{ij}$.

Bi-Hamiltonian structure for the E-M top:
Along with the standard commutator $[X, Y] = XY - YX$ on the space of skew-symmetric matrices, we introduce a new operation $[X, Y]_A = XAY - YAX$ where A is a symmetric matrix.

Observation: E-M top is Hamiltonian w.r.t to the corresponding pencil of compatible Poisson brackets $\{ , \}_{A+\lambda E}$ on $so(n) = so(n)^*$ and, therefore, it admits a large family of commuting integrals of the form

$$\text{Tr} \left(X(A + \lambda E)^{-1} \right)^k$$

which is equivalent to Manakov’s:

$$\mathcal{F}_A = \left\{ \text{Tr} (X + \lambda A)^k \right\}.$$

This family admits a basis that consists of exactly $s = \frac{1}{2} (\dim so(n) + \text{ind} so(n))$ commuting polynomials.
Completeness

Consider a pencil of compatible Poisson brackets \(\mathcal{J} = \{A + \lambda B\} \) on \(M \) and the family of commuting Casimirs \(\mathcal{F}_\mathcal{J} \) as above.

Question. Is \(\mathcal{F}_\mathcal{J} \) complete, i.e., sufficient to guarantee complete integrability? How many commuting integrals do we need?

\[
s = \frac{1}{2} (\dim M + \text{corank } \mathcal{J})
\]

Instead of computing the number of independent integrals in \(\mathcal{F}_\mathcal{J} \) it is much better to use the following definition: \(\mathcal{F}_\mathcal{J} \) is **complete** if at a generic point \(x \in M \) the differentials \(df(x), f \in \mathcal{F}_\mathcal{J} \), generate a **maximal** isotropic subspace.

Theorem

The family \(\mathcal{F}\mathcal{J} \) is complete if and only if at a generic point \(x \in M \) the following condition holds:_

\[
\text{rank } A_\lambda(x) = \text{rank } \mathcal{J} \quad \text{for all } \lambda \in \overline{\mathbb{C}}.
\]

Codimension two principle. Let all the brackets \(A_\lambda \), \(\lambda \in \overline{\mathbb{C}} \) have the same rank and \(\text{codim } S_\lambda \geq 2 \) for almost all \(\lambda \in \overline{\mathbb{C}} \). Then \(\mathcal{F}_\mathcal{J} \) is complete.

Theorem

_The family of shifts \(\mathcal{F}_a \) is complete on \(\mathfrak{g}^* \) iff \(a \in \mathfrak{g}^* \) is regular and \(\text{codim Sing} > 2 \).
Set of critical points

Suppose that the family of commuting Casimirs $\mathcal{F}_\mathcal{J}$ related to a pencil $\mathcal{J} = \{A + \lambda B\}$ is complete on M. However, there are still some singular points $x \in M$ where the commuting functions from $\mathcal{F}_\mathcal{J}$ become dependent:

$$S_\mathcal{J} = \{x \in M \mid \dim D_{\mathcal{F}_\mathcal{J}}(x) < \frac{1}{2}(\dim M + \text{corank } \mathcal{J})\}$$

where $D_{\mathcal{F}_\mathcal{J}}(x) \subset T^*_x M$ is the subspace spanned by the differentials of $f \in \mathcal{F}_\mathcal{J}$.

$S_\mathcal{J}$ is, by definition, the set of critical points of $\mathcal{F}_\mathcal{J}$ (or, equivalently the singular set of the corresponding Lagrangian fibration (see Lecture 1)).

On the other hand, for $\lambda \in \overline{\mathbb{C}}$, we can define the set of “singular points” of A_λ in M:

$$S_\lambda = \{x \in M \mid \text{rank}(A_\lambda(x)) < \text{rank } \mathcal{J}\}.$$

Theorem

A point x is critical for $\mathcal{F}_\mathcal{J}$ iff there is $\lambda \in \overline{\mathbb{C}}$ such that $x \in S_\lambda$.

In other words, the set of critical points $S_\mathcal{J}$ of the family $\mathcal{F}_\mathcal{J}$ is the union of ”singular sets” S_λ over all $\lambda \in \overline{\mathbb{C}}$:

$$S_\mathcal{J} = \bigcup_{\lambda \in \overline{\mathbb{C}}} S_\lambda$$
Theorem
$x \in M$ is a common equilibrium point for \mathcal{F}_J if and only if the kernels of all generic brackets at this point coincide: $\text{Ker } A_\lambda(x) = \text{Ker } A_\mu(x)$, for all $A_\lambda(x)$ and $A_\mu(x)$ generic.

Theorem II (L. Féher, I. Marshall)
The set of common equilibrium points of \mathcal{F}_A (with A diagonal) is the union of those Cartan subalgebras $\mathfrak{h} \subset \text{so}(n)$ which are common Cartan subalgebras for all commutators $[\ , \]_{A+\lambda E}$. One of these Cartan subalgebras is standard:

$$h_0 = \left\{ \begin{pmatrix} 0 & x_{12} \\ -x_{12} & 0 \end{pmatrix}, \begin{pmatrix} 0 & x_{34} \\ -x_{34} & 0 \end{pmatrix}, \ldots \right\}, \quad x_{i,i+1} \in \mathbb{R}.$$

All the others are obtained from h_0 by conjugation $h_0 \mapsto P h_0 P^{-1}$ where P is a permutation matrix.
Linearisation of a Poisson structure

According to the splitting theorem (A. Weinstein), locally each Poisson structure A splits into direct product of a non-degenerate Poisson structure A_{sympl} and the transversal structure A_{transv} which vanishes at the given point:

$$A = A_{\text{sympl}} \times A_{\text{transv}}$$

The transversal Poisson structure A_{transv} is well defined and we can consider its linearisation just by taking the linear terms in the Taylor expansion

$$A_{\text{transv}}(x) = \sum c_{ij}^k x_k + \ldots$$

Definition

From the algebraic viewpoint, the linearisation of A at a point $x \in M$ is a Lie algebra g_A defined on $\text{Ker } A(x)$ as follows. Let $\xi, \eta \in \text{Ker } A(x)$ and f, g be smooth functions such that $df(x) = \xi$, $dg(x) = \eta$. Then, by definition,

$$[\xi, \eta] = d\{f, g\}(x) \in \text{Ker } A(x)$$

Remark. If $x \in M$ is a regular point, then g_A is obviously trivial.
$\mathcal{J} = \{A_\lambda = A + \lambda B\}$ is a pencil of compatible Poisson brackets and $x \in M$. Let us take $x \in M$, fix $\lambda \in \mathbb{C}$ and consider the kernel $\text{Ker} \ A_\lambda(x)$.

On $\text{Ker} \ A_\lambda$ we can introduce two natural structures:
- the Lie algebra $g_\lambda = g_{A_\lambda}$, the linearisation of A_λ at the point x,
- the restriction of B onto $\text{Ker} \ A_\lambda$.

We can think of them as two Poisson structures on g_λ^*:
- the first one is linear, i.e., the standard Lie-Poisson structure related to g_λ,
- the second one is constant $B|_{g_\lambda}$.

Proposition
These two Poisson structures are compatible, i.e. generate, a Poisson pencil $\Pi = \Pi(\lambda, x)$.

Definition
This Poisson pencil Π is called the λ-linearisation of the pencil \mathcal{J} at $x \in M$.
Consider two compatible Poisson brackets on a vector space V:
linear $A + \text{constant} \ B$.

What are “compatibility conditions” for this kind of brackets?

Standard situation is “shift of argument” construction:
The brackets $\{f, g\} (x) = \sum c_{ij}^k x_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$, $\{f, g\}_a (x) = \sum c_{ij}^k a_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$ are compatible for each $a = (a_i) \in V$.

Situation can be different:
For $\{f, g\}_A (x) = \sum c_{ij}^k x_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$ there may exist constant compatible brackets $\{f, g\}_B (x) = \sum B_{ij} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$ which are not of the above type. The compatibility condition can be written as

$$B([\xi, \eta], \zeta) + B([\eta, \zeta], \xi) + B([\zeta, \xi], \eta) = 0.$$

This identity has a natural cohomological interpretation.

Remark 1. If the corresponding Lie algebra is semisimple, then the constant bracket must have the above form $\{ , \}_a$ for some $a \in V$.

Remark 2. $\text{Ker} \ B$ is a subalgebra of \mathfrak{g}.
Consider two compatible Poisson brackets on a vector space V:

linear $A +$ constant B

and the corresponding linear-Poisson pencil $\Pi = \{A + \lambda B\}$.

For this pencil $\Pi = \{A + \lambda B\}$ we can construct the family of commuting Casimirs \mathcal{F}_Π and ask the question about the structures of singular points. We will say that Π is complete, if \mathcal{F}_Π is complete.

It is easy to see that $0 \in V$ is a singular point of \mathcal{F}_Π and, moreover, it is a common equilibrium.

Definition

We say that a complete linear-constant pencil $\Pi = \{A + \lambda B\}$ is *non-degenerate*, if $0 \in V$ is a non-degenerate singular point for the family \mathcal{F}_Π.
Example

If $A \simeq \mathfrak{so}(3)$ and B is arbitrary, then $\Pi = \{A + \lambda B\}$ is non-degenerate.

$$A = \begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$$

Casimir functions: $F_1 = x^2 + y^2 + z^2$, $F_2 = ax + by + cz$
Example

$sl(2, \mathbb{R})$–bracket A and constant bracket B defined by an element $\xi \in sl(2, \mathbb{R}) \simeq sl(2, \mathbb{R})^*$:

$$A = \begin{pmatrix} 0 & y & -z \\ -y & 0 & 2x \\ z & -2x & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$$

Casimir functions: $F_1 = x^2 + yz$, $F_2 = ax + by + cz$

Is this pencil non-degenerate?

The answer depends on ξ: see next slide
Examples: semisimple case $sl(2, \mathbb{R})$
Examples: semisimple case $sl(2, \mathbb{R})$

Question.
Why are there 3 different cases? How to distinguish them?

Answer.
There are non-trivial elements $\xi \in sl(2, \mathbb{R})$ of three types:

- **elliptic** (eigenvalues are pure imaginary $i\lambda, -i\lambda$);
- **hyperbolic** (eigenvalues are real $\lambda, -\lambda$);
- **nilpotent** (both eigenvalues are zero).

We can distinguish them by using the Killing form:

- elliptic: $(\xi, \xi) < 0$;
- hyperbolic: $(\xi, \xi) > 0$;
- nilpotent: $(\xi, \xi) = 0$.

Equivalently, one may use the sign of $\text{Tr} \xi^2 = -2 \det \xi$ in the standard 2×2 representation.

Conclusion.
Non-degeneracy $\iff \xi$ is semisimple $\iff \text{Ker } B_\xi$ is a Cartan subalgebra.
Problem.
Describe all “good” Lie algebras \(g \) (equivalently, Lie-Poisson brackets \(A \)) which may produce non-degenerate linear-constant pencils and then for these Lie algebras find necessary and sufficient condition for a constant bracket \(B \) to give indeed a non-degenerate pencil \(\Pi = \Pi(g, B) = \{A + \lambda B\} \).

Such Lie algebras are called non-degenerate too.

Theorem (A. Izosimov)

A linear-constant pencil \(\Pi = \Pi(g, B) \) is non-degenerate (in the complex case) if and only if the Lie algebra \(g \) associated with the linear bracket \(A \) is isomorphic to

\[
\bigoplus \mathfrak{so}(3, \mathbb{C}) \oplus \left(\left(\bigoplus \mathfrak{D} \right) / \mathfrak{h}_0 \right) \oplus \left(\bigoplus \mathbb{C} \right)
\]

where \(\mathfrak{D} \) is the diamond Lie algebra, \(\mathfrak{h}_0 \) is a commutative ideal which belongs to the center of \(\bigoplus \mathfrak{D} \), and \(\text{Ker} \, B \) is a Cartan subalgebra of \(g \).
What is the diamond Lie algebra \mathcal{D}?

\mathcal{D} is a four dimensional Lie algebra generated by x, y, z, u with the following relations

\[
[z, x] = y, \quad [z, y] = -x \quad \text{and} \quad [x, y] = u, \quad [u, \mathcal{D}] = 0. \tag{1}
\]

In other words, \mathcal{D} (as a complex Lie algebra) is the non-trivial central extension of $e(2, \mathbb{C})$.

Matrix representation:

\[
\alpha x + \beta y + \theta z + \gamma u \mapsto \begin{pmatrix}
0 & \alpha & \beta & 2\gamma \\
0 & 0 & -\theta & \beta \\
0 & \theta & 0 & -\alpha \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

Casimir functions: $F_1 = x^2 + y^2 + 2zu$, $F_2 = u$.

The complex diamond Lie algebra \mathcal{D} has 2 different real forms

- \mathfrak{g}_{ell} defined by (1) and
- \mathfrak{g}_{hyp} defined by $[z, x] = x, [z, y] = -y$, and $[x, y] = u$.

Theorem (A. Izosimov)

A real Lie algebra \(\mathfrak{g} \) is non-degenerate iff

\[
\mathfrak{g} \cong \left(\bigoplus \mathfrak{so}(3, \mathbb{R}) \right) \oplus \left(\bigoplus \mathfrak{sl}(2, \mathbb{R}) \right) \oplus \left(\bigoplus \mathfrak{so}(3, \mathbb{C}) \right) \oplus

\left(\left(\left(\bigoplus \mathfrak{g}_{\text{ell}} \right) \oplus \left(\bigoplus \mathfrak{g}_{\text{hyper}} \right) \oplus \left(\bigoplus \mathfrak{g}_{\text{foc}} \right) \right) / \mathfrak{h}_0 \right) \oplus \left(\bigoplus \mathbb{R} \right)
\]

where

- \(\mathfrak{g}_{\text{ell}} \) and \(\mathfrak{g}_{\text{hyp}} \) are the non-trivial central extensions of \(e(2) \) and \(e(1, 1) \) (equivalently, they are real forms of \(\mathfrak{D} \)),
- \(\mathfrak{g}_{\text{foc}} = \mathfrak{D} \) treated as real Lie algebra,
- \(\mathfrak{h}_0 \) is a commutative ideal which belongs to the center.

A linear-constant pencil \(\Pi(\mathfrak{g}, B) \) is non-degenerate if \(\mathfrak{g} \) is non-degenerate and \(\text{Ker} \, B \) is a Cartan subalgebra of \(\mathfrak{g} \).

The type of the singularity is naturally defined by the “number” of elliptic, hyperbolic and focus components in the above decomposition.
Now let $J = \{A + \lambda B\}$ be an arbitrary pencil of compatible Poisson brackets. We consider the commutative family of functions \mathcal{F}_J and a singular point $x \in S_J$.
This means, that at this point there are non-trivial characteristic numbers λ_i for the pencil $J(x) = \{A(x) + \lambda B(x)\}$.
For each of them we can consider the λ_i-linearisation. Is x non-degenerate?

Theorem (A. Izosimov)

Let $J = \{A + \lambda B\}$ be a pencil of compatible Poisson brackets, \mathcal{F}_J be the corresponding family of commuting Casimirs and $x \in M$ singular point for \mathcal{F}_J.
This point is non-degenerate if and only if for every characteristic number λ_i,
1. the λ_i-linearisation of J at x is non-degenerate;
2. the pencil $J(x) = \{A + \lambda B\}$ is diagonalisable (i.e. all the Jordan blocks are 2×2).
Non-degeneracy of equilibria

Definition
A common equilibrium point \(x \in M \) of commuting Hamiltonians \(f_1, \ldots, f_n \) is called **non-degenerate** if their “quadratic parts” parts \(d^2 f_1(x), \ldots, d^2 f_n(x) \) generate a Cartan subalgebra in \(sp(T_x M, \omega) \).

Theorem

Let \(x \) be a common equilibrium point for \(F_J \). Suppose that the characteristic numbers of \(A_\lambda(x) = A(x) + \lambda B(x) \) all have multiplicity 2, and there exists \(f \in F_J \) such that the corresponding linearization operator \(A_f : T_x O \rightarrow T_x O \) is non-degenerate. Then \(x \) is non-degenerate.

Theorem II

Let \(X \) be a \(2 \times 2 \) block-diagonal skew-symmetric matrix (as above). For each pair \(x_{i,i+1}, x_{j,j+1} \), consider the two roots \(\lambda_{ij}, \lambda'_{ij} \) of the equation

\[
\frac{x_{i,i+1}^2}{x_{j,j+1}^2} = \frac{(a_i + \lambda)(a_{i+1} + \lambda)}{(a_j + \lambda)(a_{j+1} + \lambda)}.
\]

If \(\lambda_{ij}, \lambda'_{ij} \) \((i \neq j, \ i, j = 1, 3, \ldots, 2n - 1 \) are all distinct, then \(X \) is a non-degenerate equilibrium point for \(F_A \).
General criterion. Step 2: Linearisation of a Poisson pencil

\[\mathcal{J} = \{ A_\lambda = A + \lambda B \} \] is a pencil of compatible Poisson brackets and \(x \in M \).

Let us take \(x \in M \), fix \(\lambda \neq 0 \) and consider the kernel \(\text{Ker} \ A_\lambda(x) \).

On \(\text{Ker} \ A_\lambda \) we can introduce two natural structures:

- the Lie algebra \(g_\lambda = g_{A_\lambda} \), the linearisation of \(A_\lambda \) at the point \(x \),
- the restriction of \(A \) onto \(\text{Ker} \ A_\lambda \).

We can think of them as two Poisson structures on \(g_\lambda^* \):

- the first one is linear, i.e., the standard Lie-Poisson structure related to \(g_\lambda \),
- the second one is constant \(A|_{g_\lambda} \).

Proposition

These two Poisson structures are compatible, i.e. generate, a Poisson pencil
\[\Pi = \Pi(\lambda, x) \].

Definition

This Poisson pencil \(\Pi \) is called the \(\lambda \)-linearisation of the pencil \(\mathcal{J} \) at \(x \in M \).
Consider two compatible Poisson brackets on a vector space V:

\[
\text{linear } A + \text{ constant } B.
\]

Example (Argument shift method)

The brackets $\{f, g\}(x) = \sum c^k_{ij} x_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$, $\{f, g\}_a(x) = \sum c^k_{ij} a_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$ are compatible for each $a = (a_i) \in V$. If the corresponding Lie algebra is semisimple, then the constant bracket must have the above form for some $a \in V$.

For this special kind of Poisson pencils $\Pi = \{A + \lambda B\}$ we can construct the family of commuting functions \mathcal{F}_J and ask the question about the structures of singular points. We will say that J is complete, if \mathcal{F}_J is complete.

Definition

We say that a complete linear-constant pencil $\Pi = \{A + \lambda B\}$ is **non-degenerate**, if $0 \in V$ is a non-degenerate singular point for the family \mathcal{F}_Π.

Example

If $A \simeq so(3)$ and B is arbitrary, then $\Pi = \{A + \lambda B\}$ is non-degenerate.
Theorem (A. Izosimov)

Let \(J = \{ A + \lambda B \} \) be a pencil of compatible Poisson brackets, \(\mathcal{F}_J \) be the associated commutative family of functions and \(x \in M \) singular point for \(\mathcal{F}_J \). This point is non-degenerate if and only if for every characteristic number \(\lambda_i \),

1. the \(\lambda_i \)-linearisation of \(J \) at \(x \) is non-degenerate;
2. the corank of the \(\lambda_i \)-linearisation equals to \(\text{corank} J \).

Problem. Is it possible to classify non-degenerate pencils?

Theorem (A. Izosimov)

A linear-constant pencil \(\Pi = \{ A + \lambda B \} \) is non-degenerate (in the complex case) if and only if the Lie algebra \(\mathfrak{g} \) associated with the linear bracket \(A \) is isomorphic to

\[
\bigoplus \text{so}(3, \mathbb{C}) \oplus \left(\bigoplus \mathfrak{D} / \mathfrak{h}_0 \right) \oplus \bigoplus \mathbb{C}
\]

where \(\mathfrak{D} \) is the diamond Lie algebra, \(\mathfrak{h}_0 \) is a commutative ideal which belongs to the center of \(\bigoplus \mathfrak{D} \), and \(\text{Ker } B \) is a Cartan subalgebra of \(\mathfrak{g} \).
A new example: Rubanovskii case

The **Rubanovskii case** is an integrable generalization of the classical Steklov-Lyapunov case obtain by adding "gyrostatic terms". For our purposes the only important thing is

Proposition (follows from the Lax pair discovered by Yu. Fedorov)

The Rubanovskii system is Hamiltonian w.r.t. the pencil generated by the following compatible Poisson brackets:

\[
\Pi_0 = \begin{pmatrix}
0 & z_3 - b_3 p_3 & -z_2 + b_2 p_2 & 0 & p_3 & -p_2 \\
-z_3 + b_3 p_3 & 0 & z_1 - b_1 p_1 & -p_3 & 0 & p_1 \\
z_2 - b_2 p_2 & -z_1 + b_1 p_1 & 0 & p_2 & -p_1 & 0 \\
0 & p_3 & -p_2 & 0 & 0 & 0 \\
-p_3 & 0 & p_1 & 0 & 0 & 0 \\
p_2 & -p_1 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\Pi_1 = \begin{pmatrix}
0 & b_3 z_3 - g_3 & -b_2 z_2 + g_2 & 0 & 0 & 0 \\
-b_3 z_3 + g_3 & 0 & b_1 z_1 - g_1 & 0 & 0 & 0 \\
b_2 z_2 - g_2 & -b_1 z_1 + g_1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p_3 & -p_2 \\
0 & 0 & 0 & -p_3 & 0 & p_1 \\
0 & 0 & 0 & p_2 & -p_1 & 0
\end{pmatrix}
\]

\[z, p\] are coordinates in the phase space \(\mathbb{R}^6\), \(b\) and \(g\) are geometric parameters.
A new example: Rubanovskii case

The algebraic structure of $\Pi_1 - \lambda \Pi_0$ becomes clear if we change variables:

$$\tilde{z}_i = z_i + \lambda p_i + \frac{g_i}{\lambda - b_i}, \quad p_i \text{'s remain the same}$$

Then:

$$\Pi_1 - \lambda \Pi_0 = \begin{pmatrix}
0 & (b_3 - \lambda)\tilde{z}_3 & -(b_2 - \lambda)\tilde{z}_2 \\
-(b_3 - \lambda)\tilde{z}_3 & 0 & (b_1 - \lambda)\tilde{z}_1 \\
(b_2 - \lambda)\tilde{z}_2 & -(b_1 - \lambda)\tilde{z}_1 & 0 \\
0 & p_3 & -p_2 \\
-p_3 & 0 & p_1 \\
p_2 & -p_1 & 0
\end{pmatrix}$$

Thus, $\Pi_1 - \lambda \Pi_0$ splits into the direct sum of two brackets, one of which is the standard $so(3)$-bracket and the other is isomorphic to either to $so(3)$, or to $sl(2)$ depending on the signs of $b_i - \lambda$, $i = 1, 2, 3$.

Question: What is the singular set?

Answer: Those points where the rank of $\Pi_1 - \lambda \Pi_0$ drops.
A new example: Rubanovskii case

Theorem
A point \((z, p)\) belongs to the critical set iff there is \(\lambda \in \mathbb{C} \setminus \{b_1, b_2, b_3\}\) such that

\[
z_i + \lambda p_i + \frac{g_i}{\lambda - b_i} = 0, \quad i = 1, 2, 3.
\]

By applying in a similar way this bi-Hamiltonian approach, we immediately obtain some further results

Theorem
A point \((z, p)\) is a common equilibrium iff

\[
\text{rank} \begin{pmatrix} p_1 & z_1 - b_1 p_1 & g_1 - b_1 z_1 \\ p_2 & z_2 - b_2 p_2 & g_2 - b_2 z_2 \\ p_3 & z_3 - b_3 p_3 & g_3 - b_3 z_3 \end{pmatrix} = 1.
\]

Theorem
Let \(\gamma\) be a critical closed trajectory passing through \((z, p)\) with parameter \(\lambda\). Then \(\gamma\) is non-degenerate iff

\[
C = (\lambda - b_1)(\lambda - b_2)(\lambda - b_3) \sum_{i=1}^{3} \left((\lambda - b_i)p_i - \frac{g_i}{\lambda - b_i} \right)^2 \frac{1}{\lambda - b_i} \neq 0
\]

Moreover, if this expression \(C > 0\) then \(\gamma\) is stable, and if \(C < 0\) then \(\gamma\) is unstable.
Euler-Manakov tops on $so(n)$

Theorem (L. Féher, I. Marshall)

The set of common equilibrium points of \mathcal{F}_A (with A diagonal) is the union of those Cartan subalgebras $\mathfrak{h} \subset so(n)$ which are common Cartan subalgebras for all commutators $[\ , \]_{A+\lambda E}$. One of these Cartan subalgebras is standard:

$$
\mathfrak{h}_0 = \left\{ \begin{pmatrix}
0 & x_{12} \\
-x_{12} & 0 \\
 & & & & & & x_{34} \\
 & & & & & -x_{34} & 0 \\
 & & & & & & & \ddots
\end{pmatrix}, \ x_{i,i+1} \in \mathbb{R} \right\}.
$$

All the others are obtained from \mathfrak{h}_0 by conjugation $\mathfrak{h}_0 \mapsto P\mathfrak{h}_0 P^{-1}$ where P is a permutation matrix.

Theorem (Oshemkov, AB)

Let X be a 2×2 block-diagonal skew-symmetric matrix (as above). For each pair $x_{i,i+1}, x_{j,j+1}$, consider the two roots $\lambda_{ij}, \lambda'_{ij}$ of the equation

$$
\frac{x_{i,i+1}^2}{x_{j,j+1}^2} = \frac{(a_i + \lambda)(a_{i+1} + \lambda)}{(a_j + \lambda)(a_{j+1} + \lambda)}.
$$

If $\lambda_{ij}, \lambda'_{ij}$ ($i \neq j$, $i, j = 1, 3, \ldots, 2n-1$) are all distinct, then X is a non-degenerate equilibrium point for \mathcal{F}_A.
Euler-Manakov tops on $so(n)$

For each pair of blocks
\[
\begin{pmatrix}
0 & x_{i,i+1} \\
-x_{i,i+1} & 0
\end{pmatrix} = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}, \quad \begin{pmatrix} a_i & 0 \\ 0 & a_{i+1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}
\]
consider the function $f(x) = \frac{(x-\lambda_1^2)(x-\lambda_2^2)}{\omega^2(\lambda_1+\lambda_2)^2}$. and let $f(\infty) = \frac{1}{\omega^2(\lambda_1+\lambda_2)^2}$.
By drawing the graphs of all these functions on the same plane \mathbb{R}^2, we obtain a collection of parabolas called the \textit{parabolic diagram} \mathcal{P}. For simplicity we assume that n is even.
We say that this diagram is generic if any two parabolas intersect exactly at two points (including complex intersections and intersections at infinity)

Theorem (A. Izosimov)

- The equilibrium point is non-degenerate iff the parabolic diagram \mathcal{P} is generic:
 - each intersection point in the upper half plane corresponds to an elliptic component;
 - each intersection point in the lower half plane corresponds to a hyperbolic component;
 - each complex intersection corresponds to a focus component.
- If \mathcal{P} is generic, all intersections are real and located in the upper half plane, then the equilibrium is stable.
- If there is either a complex intersection or an intersection point in the lower half plane, then the equilibrium point is unstable.